有关圆周率的知识有一些有好.

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/05 10:35:26
有关圆周率的知识有一些有好.

有关圆周率的知识有一些有好.
有关圆周率的知识
有一些有好.

有关圆周率的知识有一些有好.
手写体写的π圆周率,一般以π来表示,是一个在数学及物理学普遍存在的数学常数.它定义为圆形之周长与直径之比.它也等于圆形之面积与半径平方之比.是精确计算圆周长、圆面积、球体积等几何形状的关键.分析学上,π 可定义为是最小的 x > 0 使得 sin(x) = 0.
常用的 π 近以值包括疏率“22/7”及密率“355/113”.这两项均由祖冲之给出.
π 约等于(精确到小数点后第100位)
3.14159 26535 89793 23846 26433 83279 50288 41971
69399 37510 58209 74944 59230 78164 06286 20899
86280 34825 34211 70680
π 的计算及历史
由于 π 的超越性,所以只能以近似值的方法计算 π.对于一般应用 3.14 或 22/7 已足够,但工程学常利用 3.1416 (5个有效数字) 或 3.14159 (6个有效数字).至于密率 355/113 则是易于记忆,精确至7位有效数字的分数.
实验时期
中国古籍云:‘周三径一’,意即 π=3.公元前17世纪的埃及古籍《阿美斯纸草书》(Ahmes,又称“阿梅斯草片文书”;为英国人Henry Rhind于1858年发现,因此还称“Rhind草片文书”)是世界上最早给出圆周率近似值,为 256/81 (3 + 1/9 + 1/27 + 1/81) 或 3.160.
至阿基米得之前,π值之测定倚靠实物测量.
几何法时期?D?D反复割圆
阿基米得用几何方法得出圆周率是介乎 3又1/7 与 3又10/71 之间.
公元263年,刘徽用“割圆术”给出 π=3.14014 并限出 3.14 是个很好的近似值?D?D“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”;其中有求极限的思想.
公元466年,祖冲之用割圆术算到小数点后7位精度,这一纪录在世界上保持了一千年之久.为纪念祖冲之对中国圆周率发展的贡献,将这一推算值用他的名字被命名为“祖冲之圆周率”,简称祖率
分析法时期?D?D无穷级数
这一时期人们开始摆脱利用割圆术的繁复计算,开始利用无穷级数或无穷连乘积求π.
Ludolph van Ceulen (circa,1600年) 计算出首 35 个小数字.他对此感到自豪,因而命人把它刻在自己的墓碑上.
Slovene 数学家Jurij Vega于1789年得出首 140 个小数字,其中有 137 个是正确的.这个世界纪录维持了五十年.他是利用了John Machin于1706年提出的数式.
所有以上的方法都不能快速算出 π.第一个快速算法由 Machin 提出:
其中 arctan(x) 可由泰勒级数算出.类似方去称为“类Machin算法”.

很早以前,人们看出,圆的周长和直经的比是个与圆的大小无关的常数,并称之为圆周率.1600年,英国威廉.奥托兰特首先使用π表示圆周率,因为π是希腊之"圆周"的第一个字母,而δ是"直径"的第一个字母,当δ=1时,圆周率为π.1706年英国的琼斯首先使用π.1737年欧拉在其著作中使用π.后来被数学家广泛接受,一直没用至今.
公元前200年间古希腊数学家阿基米德首先从理论上给出π值的正确求法....

全部展开

很早以前,人们看出,圆的周长和直经的比是个与圆的大小无关的常数,并称之为圆周率.1600年,英国威廉.奥托兰特首先使用π表示圆周率,因为π是希腊之"圆周"的第一个字母,而δ是"直径"的第一个字母,当δ=1时,圆周率为π.1706年英国的琼斯首先使用π.1737年欧拉在其著作中使用π.后来被数学家广泛接受,一直没用至今.
公元前200年间古希腊数学家阿基米德首先从理论上给出π值的正确求法.他用圆外切与内接多边形的周长从大、小两个方向上同时逐步逼近圆的周长,巧妙地求得π
会元前150年左右,另一位古希腊数学家托勒密用弦表法(以1 的圆心角所对弦长乘以360再除以圆的直径)给出了π的近似值3.1416.
公元200年间,我国数学家刘徽提供了求圆周率的科学方法----割圆术,体现了极限观点.刘徽与阿基米德的方法有所不同,他只取"内接"不取"外切".利用圆面积不等式推出结果,起到了事半功倍的效果.而后,祖冲之在圆周率的计算上取得了世界领先地位,求得"约率" 和"密率" (又称祖率)得到3.1415926<π<3.1415927.可惜,祖冲之的计算方法后来失传了.人们推测他用了刘徽的割圆术,但究竟用什么方法,还是一个谜.
15世纪,伊斯兰的数学家阿尔.卡西通过分别计算圆内接和外接正3 2 边形周长,把 π 值推到小数点后16位,打破了祖冲之保持了上千年的记录.
1579年法国韦达发现了关系式 ...首次摆脱了几何学的陈旧方法,寻求到了π的解析表达式.
1650年瓦里斯把π表示成元穷乘积的形式
稍后,莱布尼茨发现接着,欧拉证明了这些公式的计算量都很大,尽管形式非常简单.π值的计算方法的最大突破是找到了它的反正切函数表达式.
1671年,苏格兰数学家格列哥里发现了
1706年,英国数学麦欣首先发现 其计算速度远远超过方典算法.
1777年法国数学家蒲丰提出他的著名的投针问题.依靠它,可以用概率方法得到 的过似值.假定在平面上画一组距离为 的平行线,向此平面任意投一长度为 的针,若投针次数为 ,针马平行线中任意一条相交的次数为 ,则有 ,很多人做过实验,1901年,有人投针3408次得出π3.1415926,如果取 ,则该式化简为
1794年勒让德证明了π是无理数,即不可能用两个整数的比表示.
1882年,德国数学家林曼德证明了π是超越数,即不可能是一个整系数代数方程的根.
本世纪50年代以后,圆周率π的计算开始借助于电子计算机,从而出现了新的突破.目前有人宣称已经把π计算到了亿位甚至十亿位以上的有效数字.
人们试图从统计上获悉π的各位数字是否有某种规律.竞争还在继续,正如有人所说,数学家探索中的进程也像π这个数一样:永不循环,无止无休……

收起